MATH20132 Calculus of Several Variables.

Problems 2: Continuity

The definition of continuity given in the notes is that $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} is continuous at $\mathbf{a} \in U$ if, and only if, $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})$. This has the $\varepsilon-\delta$ version

$$
\forall \varepsilon>0, \exists \delta>0: \forall \mathbf{x},|\mathbf{x}-\mathbf{a}|<\delta \Longrightarrow|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})|<\varepsilon
$$

1. Scalar-valued functions.
i. Let $1 \leq i \leq n$ and define the i-th projection function $p^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by only retaining the i-th coordinate, so

$$
p^{i}(\mathbf{x})=p^{i}\left(\left(x^{1}, \ldots, x^{n}\right)^{T}\right)=x^{i}
$$

Verify the $\varepsilon-\delta$ definition to show that p^{i} is continuous on \mathbb{R}^{n}.
Remember, if $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n}$ and $|\mathbf{x}-\mathbf{a}|<\delta$ then $\left|x^{i}-a^{i}\right|<\delta$ for each $1 \leq i \leq n$.

A different proof of continuity was given in the lectures.
ii. Prove, by verifying the $\varepsilon-\delta$ definition that

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x^{1}+x^{2}+\ldots+x^{n}
$$

is continuous on \mathbb{R}^{n}.
iii. Let $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{c} \neq \mathbf{0}$, be a fixed vector. Prove, by verifying the $\varepsilon-\delta$ definition that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ is continuous on \mathbb{R}^{n}.

Hint Make use of the Cauchy-Schwarz inequality, $|\mathbf{c} \bullet \mathbf{d}| \leq|\mathbf{c}||\mathbf{d}|$ for $\mathbf{c}, \mathbf{d} \in \mathbb{R}^{n}$.

Part i is a special case of Part iii, with $\mathbf{c}=\mathbf{e}_{i}$, while Part $i i$ is the special case $\mathbf{c}=(1,1, \ldots, 1)^{T}$.

2 Prove, by verifying the $\varepsilon-\delta$ definition of continuity that the scalar-valued $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y)^{T} \mapsto x y$ is continuous on \mathbb{R}^{2}.
Hint If $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ is given write $f(\mathbf{x})-f(\mathbf{a})=x y-a b$ in terms of $x-a$ and $y-b$.

3 Prove, by verifying the $\varepsilon-\delta$ definition that the vector-valued function $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
\binom{x}{y} \mapsto\binom{2 x+y}{x-3 y}
$$

is continuous on \mathbb{R}^{2}.
Note For practice I have asked you to verify the definition, not to use any result that would allow you to look at each component separately.

4 Let $M_{m, n}(\mathbb{R})$ be the set of all $m \times n$ matrix of real numbers. Let $M \in$ $M_{m, n}(\mathbb{R})$.

In the notes we showed that the function $\mathbf{x} \mapsto M \mathbf{x}$ is continuous on \mathbb{R}^{n} by showing that each component function is continuous on \mathbb{R}^{n}. In this question we show it is continuous by verifying the $\varepsilon-\delta$ definition.
i. Prove that there exists $C>0$, depending on M, such that $|M \mathbf{x}| \leq C|\mathbf{x}|$ for all $\mathrm{x} \in \mathbb{R}^{n}$.
Hint Write the matrix in row form as

$$
M=\left(\begin{array}{c}
\mathbf{r}^{1} \\
\mathbf{r}^{2} \\
\vdots \\
\mathbf{r}^{m}
\end{array}\right) \quad \text { when } \quad M \mathbf{x}=\left(\begin{array}{c}
\mathbf{r}^{1} \bullet \mathbf{x} \\
\mathbf{r}^{2} \bullet \mathbf{x} \\
\vdots \\
\mathbf{r}^{m} \bullet \mathbf{x}
\end{array}\right)
$$

What is $|M \mathbf{x}|$? Apply Cauchy-Schwarz to each $\left|\mathbf{r}^{i} \bullet \mathbf{x}\right|$.
ii. Deduce, by verifying the $\varepsilon-\delta$ definition, that the vector-valued function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$ is continuous on \mathbb{R}^{n}.
5. Determine where each of the following maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous. For $\mathbf{x}=(x, y)^{T} \in \mathbb{R}^{2}$,
i.

$$
f(\mathbf{x})= \begin{cases}x+y & \text { if } y>0 \\ x-y-1 & \text { if } y \leq 0\end{cases}
$$

ii.

$$
f(\mathbf{x})= \begin{cases}x+y & \text { if } y>0 \\ x-y & \text { if } y \leq 0\end{cases}
$$

Hint: Your arguments should split into three cases, $y>0, y<0$ and $y=0$. You should make use of the fact that polynomials in x and y are continuous in open subsets of \mathbb{R}^{2}.
6. Return to the function of Question 10 Sheet $1, f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x})=\frac{\left(x^{2}-y\right)^{2}}{x^{4}+y^{2}} \text { for } \mathbf{x}=(x, y)^{T} \neq \mathbf{0} \quad \text { and } \quad f(\mathbf{0})=1
$$

i. Show that f is continuous at the origin along any straight line through the origin.
ii. Show that f is not continuous at the origin.

This is then an illustration of

$$
\forall \mathbf{v}, \lim _{t \rightarrow 0} f(\mathbf{a}+t \mathbf{v})=f(\mathbf{a}) \nRightarrow \lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=f(\mathbf{a}) .
$$

Linear Functions.

7. Linear functions The definition of a linear function $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is that

$$
\mathbf{L}(\mathbf{u}+\mathbf{v})=\mathbf{L}(\mathbf{u})+\mathbf{L}(\mathbf{v}) \quad \text { and } \quad \mathbf{L}(\lambda \mathbf{u})=\lambda \mathbf{L}(\mathbf{u}),
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all $\lambda \in \mathbb{R}$.
i. Given $\mathbf{a} \in \mathbb{R}^{n}$ prove that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{a} \bullet \mathbf{x}$ is a linear function.

This was stated without proof in the lectures.
ii. An example of Part i is, if $\mathbf{a}=(2,-5)^{T} \in \mathbb{R}^{2}$, then $f(\mathbf{x})=\mathbf{a} \bullet \mathbf{x}=$ $2 x-5 y$ is a linear function on \mathbb{R}^{2}. Show that
a. $f(\mathbf{x})=2 x-5 y+2$ is not a linear function on \mathbb{R}^{2},
b. $f(\mathbf{x})=2 x-5 y+3 x y$ is not a linear function on \mathbb{R}^{2}.
iii. Given $M \in M_{m, n}(\mathbb{R})$, an $m \times n$ matrix with real entries, prove that $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$ is a linear function.

This was stated without proof in the lectures.
iv. Let $\mathbf{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
\mathbf{L}\left(\binom{x}{y}\right)=\left(\begin{array}{c}
3 x+2 y \\
x-y+1 \\
5 x
\end{array}\right) .
$$

Show that \mathbf{L} is not a linear function.
8. If $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear function prove that there exists $C>0$, depending on \mathbf{L}, such that

$$
\begin{equation*}
|\mathbf{L}(\mathbf{x})| \leq C|\mathbf{x}| \tag{1}
\end{equation*}
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$.
Deduce that \mathbf{L} satisfies the $\varepsilon-\delta$ definition of continuous on \mathbb{R}^{n}.
Hint Apply a result from the lectures along with Question 4 above.

Additional Questions 2

9. Verify the $\varepsilon-\delta$ definition of continuity and show that the scalar-valued $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y)^{T} \mapsto x^{2} y$ is continuous on \mathbb{R}^{2}.
Hint Given $\mathbf{a}=(a, b)^{T} \in \mathbb{R}^{2}$ write $x^{2} y-a^{2} b$ in terms of $x-a$ and $y-b$.
10. Let $1 \leq i \leq n$ and define $\rho^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ by omitting the i-th coordinate, so

$$
\rho^{i}\left(\left(x^{1}, \ldots, x^{n}\right)^{T}\right)=\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{n}\right)^{T}
$$

i. Verify the $\varepsilon-\delta$ definition of continuity and show that ρ^{i} is continuous on \mathbb{R}^{n}.
ii. For each $1 \leq i \leq n$ find $M_{i} \in M_{n-1, n}(\mathbb{R})$ such that $\rho^{i}(\mathbf{x})=M_{i} \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. (Thus continuity follows from Question 4 . We could, though, note that ρ^{i} is linear in which case continuity follows from Question 8.)

