Problems 2: Continuity

The definition of continuity given in the notes is that $\mathbf{f} : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $\mathbf{a} \in U$ if, and only if, $\lim_{\mathbf{x}\to\mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{a})$. This has the ε - δ version

2020-21

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall \mathbf{x}, |\mathbf{x} - \mathbf{a}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})| < \varepsilon.$$

- 1. Scalar-valued functions.
 - i. Let $1 \leq i \leq n$ and define the *i*-th projection function $p^i : \mathbb{R}^n \to \mathbb{R}$ by only retaining the *i*-th coordinate, so

$$p^{i}(\mathbf{x}) = p^{i}\left(\left(x^{1}, \dots, x^{n}\right)^{T}\right) = x^{i}$$

Verify the ε - δ definition to show that p^i is continuous on \mathbb{R}^n .

Remember, if $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $|\mathbf{x} - \mathbf{a}| < \delta$ then $|x^i - a^i| < \delta$ for each $1 \le i \le n$.

A different proof of continuity was given in the lectures.

ii. Prove, by verifying the ε - δ definition that

$$f: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto x^1 + x^2 + \dots + x^n$$

is continuous on \mathbb{R}^n .

iii. Let $\mathbf{c} \in \mathbb{R}^n, \mathbf{c} \neq \mathbf{0}$, be a fixed vector. Prove, by verifying the $\varepsilon - \delta$ definition that $f : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ is continuous on \mathbb{R}^n .

Hint Make use of the Cauchy-Schwarz inequality, $|\mathbf{c} \bullet \mathbf{d}| \leq |\mathbf{c}| |\mathbf{d}|$ for $\mathbf{c}, \mathbf{d} \in \mathbb{R}^n$.

Part *i* is a special case of Part *iii*, with $\mathbf{c} = \mathbf{e}_i$, while Part *ii* is the special case $\mathbf{c} = (1, 1, ..., 1)^T$.

2 Prove, by verifying the ε - δ definition of continuity that the scalar-valued $f : \mathbb{R}^2 \to \mathbb{R}, (x, y)^T \mapsto xy$ is continuous on \mathbb{R}^2 .

Hint If $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ is given write $f(\mathbf{x}) - f(\mathbf{a}) = xy - ab$ in terms of x - a and y - b.

3 Prove, by verifying the ε - δ definition that the vector-valued function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$,

$$\left(\begin{array}{c} x\\ y \end{array}\right) \mapsto \left(\begin{array}{c} 2x+y\\ x-3y \end{array}\right)$$

is continuous on \mathbb{R}^2 .

Note For practice I have asked you to verify the definition, **not** to use any result that would allow you to look at each component separately.

4 Let $M_{m,n}(\mathbb{R})$ be the set of all $m \times n$ matrix of real numbers. Let $M \in M_{m,n}(\mathbb{R})$.

In the notes we showed that the function $\mathbf{x} \mapsto M\mathbf{x}$ is continuous on \mathbb{R}^n by showing that each component function is continuous on \mathbb{R}^n . In this question we show it is continuous by verifying the $\varepsilon \cdot \delta$ definition.

i. Prove that there exists C > 0, depending on M, such that $|M\mathbf{x}| \leq C |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$.

Hint Write the matrix in row form as

$$M = \begin{pmatrix} \mathbf{r}^{1} \\ \mathbf{r}^{2} \\ \vdots \\ \mathbf{r}^{m} \end{pmatrix} \quad \text{when} \quad M\mathbf{x} = \begin{pmatrix} \mathbf{r}^{1} \bullet \mathbf{x} \\ \mathbf{r}^{2} \bullet \mathbf{x} \\ \vdots \\ \mathbf{r}^{m} \bullet \mathbf{x} \end{pmatrix}.$$

What is $|M\mathbf{x}|$? Apply Cauchy-Schwarz to each $|\mathbf{r}^i \bullet \mathbf{x}|$.

ii. Deduce, by verifying the $\varepsilon - \delta$ definition, that the vector-valued function $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto M\mathbf{x}$ is continuous on \mathbb{R}^n .

5. Determine where each of the following maps $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous. For $\mathbf{x} = (x, y)^T \in \mathbb{R}^2$,

$$f(\mathbf{x}) = \begin{cases} x+y & \text{if } y > 0\\ x-y-1 & \text{if } y \le 0 \end{cases}$$

ii.

$$f(\mathbf{x}) = \begin{cases} x+y & \text{if } y > 0\\ x-y & \text{if } y \le 0 \end{cases}$$

Hint: Your arguments should split into three cases, y > 0, y < 0 and y = 0. You should make use of the fact that polynomials in x and y are continuous in open subsets of \mathbb{R}^2 .

6. Return to the function of Question 10 Sheet 1, $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(\mathbf{x}) = \frac{(x^2 - y)^2}{x^4 + y^2}$$
 for $\mathbf{x} = (x, y)^T \neq \mathbf{0}$ and $f(\mathbf{0}) = 1$.

- i. Show that f is continuous at the origin along any straight line through the origin.
- ii. Show that f is not continuous at the origin.

This is then an illustration of

$$\forall \mathbf{v}, \lim_{t \to 0} f(\mathbf{a} + t\mathbf{v}) = f(\mathbf{a}) \implies \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}).$$

Linear Functions.

7. Linear functions The definition of a linear function $\mathbf{L} : \mathbb{R}^n \to \mathbb{R}^m$ is that

$$\mathbf{L}(\mathbf{u} + \mathbf{v}) = \mathbf{L}(\mathbf{u}) + \mathbf{L}(\mathbf{v}) \text{ and } \mathbf{L}(\lambda \mathbf{u}) = \boldsymbol{\lambda} \mathbf{L}(\mathbf{u}),$$

for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$.

- i. Given $\mathbf{a} \in \mathbb{R}^n$ prove that $L : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \mathbf{a} \bullet \mathbf{x}$ is a linear function. This was stated without proof in the lectures.
- ii. An example of Part i is, if $\mathbf{a} = (2, -5)^T \in \mathbb{R}^2$, then $f(\mathbf{x}) = \mathbf{a} \bullet \mathbf{x} = 2x 5y$ is a linear function on \mathbb{R}^2 . Show that
 - a. $f(\mathbf{x}) = 2x 5y + 2$ is not a linear function on \mathbb{R}^2 ,
 - b. $f(\mathbf{x}) = 2x 5y + 3xy$ is not a linear function on \mathbb{R}^2 .
- iii. Given $M \in M_{m,n}(\mathbb{R})$, an $m \times n$ matrix with real entries, prove that $\mathbf{L} : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto M\mathbf{x}$ is a linear function.

This was stated without proof in the lectures.

iv. Let $\mathbf{L}: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$\mathbf{L}\left(\binom{x}{y}\right) = \left(\begin{array}{c} 3x + 2y\\ x - y + 1\\ 5x \end{array}\right).$$

Show that **L** is not a linear function.

8. If $\mathbf{L} : \mathbb{R}^n \to \mathbb{R}^m$ is a linear function prove that there exists C > 0, depending on \mathbf{L} , such that

$$|\mathbf{L}(\mathbf{x})| \le C \, |\mathbf{x}| \tag{1}$$

for all $\mathbf{x} \in \mathbb{R}^n$.

Deduce that **L** satisfies the ε - δ definition of continuous on \mathbb{R}^n .

Hint Apply a result from the lectures along with Question 4 above.

Additional Questions 2

9. Verify the ε - δ definition of continuity and show that the scalar-valued $f : \mathbb{R}^2 \to \mathbb{R}, (x, y)^T \mapsto x^2 y$ is continuous on \mathbb{R}^2 .

Hint Given $\mathbf{a} = (a, b)^T \in \mathbb{R}^2$ write $x^2y - a^2b$ in terms of x - a and y - b.

10. Let $1 \le i \le n$ and define $\rho^i : \mathbb{R}^n \to \mathbb{R}^{n-1}$ by omitting the *i*-th coordinate, so

$$\rho^{i}((x^{1},...,x^{n})^{T}) = (x^{1},...,x^{i-1},x^{i+1},...,x^{n})^{T}$$

i. Verify the ε - δ definition of continuity and show that ρ^i is continuous on \mathbb{R}^n .

ii. For each $1 \leq i \leq n$ find $M_i \in M_{n-1,n}(\mathbb{R})$ such that $\rho^i(\mathbf{x}) = M_i \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. (Thus continuity follows from Question 4. We could, though, note that ρ^i is linear in which case continuity follows from Question 8.)